Environment Identification for a Running Robot Using Inertial and Actuator Cues

نویسندگان

  • Philippe Giguère
  • Gregory Dudek
  • Shane Saunderson
  • Chris Prahacs
چکیده

In this paper, we explore the idea of using inertial and actuator information to accurately identify the environment of an amphibious robot. In particular, in our work with a legged robot we use internal sensors to measure the dynamics and interaction forces experienced by the robot. From these measurements we use simple machine learning methods to probabilistically infer properties of the environment, and therefore identify it. The robot’s gait can then be automatically selected in response to environmental changes. Experimental results show that for several environments (sand, water, snow, ice, etc.), the identification process is over 90 per cent accurate. The requisite data can be collected during a half-leg rotation (about 250 ms), making it one of the fastest and most economical environment identifiers for a dynamic robot. For the littoral setting, a gaitchange experiment is done as a proof-of-concept of a robot automatically adapting its gait to suit the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

همکاری رباتها در جابجایی جسم نامعین توسط کنترلر امپدانسچندگانه

Parameter identification techniques are particularly attractive to determine the inertial parameters of robot manipulators and manipulated payloads. These parameters are particularly needed in implementation of a model-based controller for robot manipulators. In this paper, the inertial parameters of a manipulated rigid-body object have been estimated. The Newton-Euler equations will be employe...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

Direct adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization

In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...

متن کامل

Experimental robot and payload identification with application to dynamic trajectory compensation

Industrial robot manipulators have become an indispensable means of automation to increase flexibility and productivity. The ever increasing quality standards and new applications impose higher requirements on accuracy, reliability and performance. Due to the complex nonlinear robot dynamics, the design of robot controllers should include accurate dynamic robot models. Robot identification is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006